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Abstract: Countermovement jump (CMJ) performance analysis is vital in sports science for assessing
lower-body strength and neuromuscular efficiency. This study evaluated the validity of the Enode
Sensor and My Jump 3 App for measuring vertical jump heights, comparing them to those measured
using the established Force Plate. Twenty-nine participants performed CMJs measured using each
device. Descriptive statistics indicated mean jump heights of 48.4 ± 4.18 cm (for the Enode Sensor),
47.3 ± 4.05 cm (for My Jump 3), and 46.1 ± 4.03 cm (for the Force Plate). Reliability was confirmed
via Intraclass Correlation Coefficients (ICCs), with the Enode Sensor at 0.914 and My Jump 3 at 0.968,
demonstrating excellent reliability. Bland–Altman analysis showed mean biases of 2.281 cm (for
the Enode Sensor) and 1.297 cm (for My Jump 3) against the Force Plate, with limits of agreement
suggesting close alignment. Strong positive correlations were observed (for the Enode Sensor,
r = 0.972 and for My Jump 3, r = 0.987; p < 0.001), and linear regression analysis produced R2 values of
0.945 and 0.973, respectively, confirming both tools’ accuracy for vertical jump measurement. These
findings indicate that although both tools are suitable for CMJ assessment, My Jump 3 demonstrated
slightly superior accuracy, underscoring the potential for accessible, reliable performance monitoring
in sports contexts.

Keywords: CMJ; explosive lower-body power test; measurement accuracy; wearables; video-based
assessment tool; force platform; elite-level team athletes; consistency; athletic output;
vertical displacement

1. Introduction

Countermovement jump (CMJ) assessment serves as a cornerstone in sports science,
widely recognized for evaluating lower-body power, neuromuscular performance, and
overall athleticism [1]. This assessment method holds particular importance in sports, such
as basketball, where explosive strength is essential for performance in movements, like
jumping, sprinting, and changing directions [2]. The CMJ involves a rapid downward
movement followed by an explosive upward jump, effectively utilizing the stretching–
shortening cycle to maximize power output [3]. Given their role in assessing explosive
performance, CMJ metrics can inform training choices and load management, helping
coaches and practitioners to maximize training effectiveness and minimize overtraining
risks [4,5].

Research indicates that CMJ assessments can help to identify athletic talent and track
performance changes over time, with notable studies investigating its utility across sports
and populations. For instance, Haugen et al. [6] analyzed CMJ performance in female
soccer players, finding that CMJ assessments could help to identify athletes with superior
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neuromuscular function and jumping ability. Similarly, Pociūnas [7] emphasized the im-
portance of consistent pre-test protocols for accurate CMJ results, highlighting a strong
association between pre- and post-warmup CMJ performance in basketball players. Ad-
ditionally, research on the interaction between the human body and surfaces of varying
stiffness, such as that by Arampatzis et al. [7], reveals that softer surfaces can enhance jump
performance by increasing the ratio of the positive-to-negative mechanical work, with ad-
justments influenced by both surface stiffness and movement intensity. Moreover, studies
show that short-duration static stretching may not significantly affect jump performance or
alter neuromuscular parameters, such as the maximum voluntary contraction, strain, or
stiffness [8], underscoring the complexity of factors that impact CMJ performance and its
broader applicability in sports assessment.

CMJ assessments can derive numerous kinetic and kinematic variables—including
jump height, peak power, the rate of force development, and peak velocity—offering
comprehensive insights into an athlete’s explosive capabilities and overall neuromuscular
health [9,10]. Claudino et al. [1] further validated CMJ height as a reliable measure for
tracking neuromuscular status in athletes, underscoring its relevance for monitoring fatigue
and recovery.

Traditional CMJ measurement methods, such as Force Platforms and motion capture
systems, are often viewed as gold standards because of their precision in capturing ground
reaction forces and detailed kinematic data [11]. Force Platforms, for instance, accurately
quantify jump metrics, like vertical jump height, peak force, and the rate of force develop-
ment [12]. Despite their accuracy, these tools are often expensive, require extensive setup,
and are typically confined to laboratory settings, limiting their practicality in routine field
assessments [1,13].

Recent technological advancements have aimed to address these limitations by intro-
ducing more accessible alternatives, notably, wearable sensors and mobile applications [14].
Devices like the Enode Sensor leverage accelerometers and gyroscopes to capture motion
data during jumps, offering a portable and cost-effective option for performance moni-
toring [15]. Likewise, mobile applications, such as My Jump, utilize smartphone cameras
and advanced video analysis algorithms to estimate jump height and other CMJ metrics,
thus making performance assessment more accessible and practical for day-to-day use
by athletes and coaches [16]. Although these tools offer convenience, they may also face
challenges in accuracy, especially in uncontrolled environments, where factors such as
surface variations and user positioning can impact data reliability [15,17].

A considerable body of research has explored the accuracy and reliability of the My
Jump application and various wearable devices in jumping assessments [17–31]. Validity,
which measures how well a tool assesses its intended construct, and reliability, which con-
cerns the consistency of repeated measurements, are central to evaluating these tools [32,33].
Several studies have mentioned that My Jump can provide valid, reliable jump height
measurements comparable to those from Force Plates in controlled environments, making
it a practical alternative for settings beyond the lab [17,34–36]. Wearable devices, such as ac-
celerometers and inertial measurement units, have also demonstrated promising accuracy,
though factors like sensor placement and calibration can affect data quality [4,37]. Research
on the Enode Plus (formerly VmaxPro) for measuring vertical jump height remains com-
paratively limited, with no studies to date directly assessing its validity against both the
My Jump 3 Application and the Force Plate standard.

The aim of this study is to evaluate and compare the accuracy and reliability of CMJ
data obtained from the Enode Sensor and My Jump 3 Application against those obtained
from a gold-standard Force Plate. Specifically, this study sought to answer (1) how CMJ
data from the Enode Sensor compare to Force Plate data in terms of accuracy and reliability,
(2) how CMJ data from the My Jump 3 App compare to Force Plate data, and (3) how the
validity and reliability of the Enode Sensor compare directly to those of My Jump 3.
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2. Materials and Methods
2.1. Participants

A total of 29 male professional basketball players (Mage: 23.0 ± 4.5 years, range: 18–31;
body mass: 92.0 ± 13.0 kg; body height: 193 ± 8.5 cm) were recruited as volunteers from
a first-division National Championship basketball club in Hungary. The group consisted
of six point-guards (20.69%), five shooting guards (17.24%), six small forwards (20.69%),
seven power forwards (24.14%), and five centers (17.24%). The players had an average of
11.76 ± 3.58 years of experience in competitive events. Their training experience at the am-
ateur level averaged 9.10 ± 1.68 years, while their elite-level training experience averaged
2.66 ± 2.64 years. All the participants were healthy and actively engaged in competitive
basketball. Each participant attended one testing session, with a total duration of 30 min.

Inclusion criteria included active participation in competitive basketball (>5 years),
experience with countermovement jump testing, and no history of lower extremity injuries
within the past six months, which could impact the jump performance. Exclusion criteria
included participants with recent lower extremity injuries or surgeries within the past
year, as these conditions may impair neuromuscular function, strength, and coordination.
Such impairments could potentially skew CMJ performance data and lead to inaccurate
conclusions about baseline jump abilities in healthy athletes. Additionally, participants
were required to refrain from high-intensity physical activity for 48 h prior to testing to
ensure that fatigue did not influence their jump performance. The study was approved
by the ethics committee (approval number: RES2024/011). It was a non-interventional
study and conducted in accordance with the Declaration of Helsinki. Informed consent was
obtained from each participant and the basketball club, after being thoroughly informed
about the study’s purpose, procedures, and potential implications.

2.2. Data Collection and Analysis Procedures

This study employs a cross-sectional observational design to compare measurements
obtained from the Enode Sensor and My Jump 3 App against those obtained from a Force
Platform, which serves as the gold standard. Cross-sectional studies are well suited for
comparing different measurement tools within a single time frame, enabling efficient data
collection and analysis [38]. A power analysis was conducted to ensure an adequate sample
size for detecting a large effect [39,40], following Cohen’s criteria [41], which determined
the appropriate number of participants required for this study. Thus, a sample size of
29 participants is deemed as sufficient for validity studies in cross-sectional designs that
compare measurement tools [41].

Countermovement jump assessments were conducted in a controlled team setting
using laboratory-grade equipment within a S&C environment in a single session from 15:00
to 16:30, on a stable and level floor surface under consistent artificial lighting, with the
laboratory temperature maintained at 21 ± 2 ◦C. The participants completed an 8-min tread-
mill warmup, followed by a 4-min dynamic stretching session that included quadriceps
stretches, front stretch kicks, forward lunges, bodyweight squats, and low-intensity counter-
movement jumps. Clear instructions were provided on performing the countermovement
jump without an arm swing. Given that prior experience with countermovement jump
assessments was an inclusion criterion, all the participants were already familiar with the
protocol. The participants stood with their hands positioned at their hips, performed a
countermovement to a depth of their choice, and then jumped as high as they could when
ready. Each participant completed three maximum-effort CMJs, with a 2-min rest between
attempts, and the highest jump was selected for analysis, as in similar studies [31]. Jump
heights were recorded simultaneously on all the devices. The participants performed the
jumps on a Force Platform while wearing an Enode Hip Belt with the Enode Sensor secured
inside, and each jump was video-recorded using a smartphone for analysis in the My Jump
3 Application.
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2.3. Research Tools
2.3.1. Enode Sensor

The Enode Sensor (formerly known as VmaxPro) is a wearable inertial measurement
unit (IMU) equipped with an accelerometer and gyroscope, specifically designed for sports
performance monitoring and programming. It tracks various aspects of athletic movements,
particularly those involving explosive power, such as jumps, sprints, and lifts [42].

The Enode Sensor is a small, lightweight, and portable device with dimensions of
44 × 27 × 13 mm and a weight of 16 g, making it easy to attach to the body or sports
equipment. It features a 12-h battery life, a wireless connectivity range of 15 m, and a mea-
suring range of >0.15 m/s, enabling the accurate measurement of rapid movements. The
sensor connects to a smartphone or tablet via Bluetooth, allowing for real-time data transfer
and analysis through the Enode application, which provides detailed visualizations and
performance metrics. In this study, the Enode app was operated on an iPhone 14 Pro. After
establishing a Bluetooth connection, the application displayed a real-time 3D representation
with six marked sides for proper sensor orientation. The sensor was briefly placed on
each side for precise calibration, ensuring accurate measurements. Triaxial acceleration
data were collected by the sensor’s inertial measurement unit (IMU) at a sampling rate
of 1000 Hz and transmitted via Bluetooth (~65 Hz) to the iPhone 14 Pro. These features,
combined with its compact design and ability to operate within a temperature range of
0–40 ◦C, ensured the device’s reliable performance under standard testing conditions [42].

The Enode Sensor measures parameters, such as jump height, flight time, peak power,
and force production, during movements, like the countermovement jump. It can also track
metrics, such as acceleration and top speed, during sprints and monitor lift velocity and
force to optimize training loads and techniques. Furthermore, it analyzes jump biomechan-
ics, including eccentric and concentric phases, to enhance technique and performance [42].

For countermovement jump assessments, the Enode Sensor must be attached close
to the center of mass. This placement minimizes measurement errors by capturing the
athlete’s total body movement during the jump. Ideally, the sensor is positioned on the side
above the hip of each participant, following a standardized protocol to ensure consistent
placement and minimize variability. This setup was achieved with the Enode Hip Strap,
which has a quick-release buckle, allowing for secure attachment of the sensor and quick
changes between athletes [42].

2.3.2. My Jump Lab App (My Jump 3)

The My Jump 3 App (formerly My Jump 2) is a mobile application available for iOS
and Android smartphones. For jump assessments, My Jump 3 uses the smartphone’s
camera and video analysis algorithms to estimate jump heights based on flight times. Users
record jumps with the smartphone camera, and the app analyzes the video to calculate
key metrics. It supports various jump types, including the countermovement jump (CMJ),
squat jump (SJ), and drop jump (DJ). Designed with an intuitive interface, the app is
accessible to coaches, athletes, and sports scientists without requiring extensive technical
expertise. It allows for data storage within the app, with options for exporting data for
additional analysis or recordkeeping. The app also provides immediate feedback on jump
performance, enabling users to make quick adjustments during training (My Jump Lab Pro).
Specifically, the My Jump Lab App (My Jump 3) employs the same methodology as that
of My Jump 2, where jump analysis involves marking the takeoff and landing moments
on the time axis. According to the manufacturer, the new AI feature in My Jump Lab
enhances this process, using computer vision (image recognition) to create a bounding box
around the subject captured in the video and calculates their position in pixels during the
jump. These pixel data are then converted to centimeters, using the user’s body height as
a calibration factor. Preliminary testing of the app against a Force Plate showed excellent
validity, 0.93 between instruments, highlighting the app’s reliability for measuring vertical
jump heights [43]. In this study, My Jump 3 was used on an iPhone 14 Pro, which offers a
video-recording capacity of 240 frames per second (FPS). The smartphone was positioned
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on a stand 1.5 m from the participant, at a height of approximately 30 cm, following the
app’s recommended guidelines [17], which resulted in an observation angle of about 11.5◦

from the ground, to ensure stability and minimize recording errors [44]. The app was
operated by an experienced observer with expertise as a strength and conditioning (S&C)
coach, ensuring adherence to the app’s guidelines.

2.3.3. Force Platform

Force Platforms, also known as Force Plates, are sophisticated measurement devices
used in sports science, biomechanics, and clinical settings to assess ground reaction forces
during various movements, including jumps, gaits, and balance tasks. These devices
provide detailed information about the forces exerted by the feet on the ground, which can
be used to analyze movement mechanics and performance [45].

Force Platforms measure three-dimensional ground reaction forces (vertical, anterior–
posterior, and medial–lateral) exerted by the feet during different movements. With high
sampling rates, they capture rapid force changes during explosive movements, like jumps.
Known for their high degrees of accuracy and precision, Force Platforms are considered as
the gold standard for biomechanical analyses. They measure forces along multiple axes,
providing comprehensive data on force directions and magnitudes [46].

In this study, a high-quality PJS-4P60S Force Platform with MVJ v.4.0 software (“JBA”
Zb. Staniak, Warsaw, Poland) and a 400 Hz sampling rate will serve as the reference
standard for CMJ measurements. The Force Platform connects through an analog-to-digital
converter (ADC) to a Dell Inspiron i7 laptop operating the MVJ v.4.0 software. This setup
enables precise measurements of ground reaction forces during CMJs, providing accurate
data on jump heights. The platform will be calibrated according to the manufacturer’s spec-
ifications before data collection to ensure accuracy and reliability. Despite their accuracy,
Force Platforms require a controlled environment, limiting their application in everyday
training settings.

2.4. Statistical Analysis

Descriptive statistics were used to summarize the data, calculating means and standard
deviations for the highest vertical jump measurements recorded for each participant across
all the methods. The Shapiro–Wilk test was used to evaluate the data distribution normality,
while Levene’s test assessed the homogeneity of the variances. Reliability was assessed
through the Intraclass Correlation Coefficient (ICC), which measures the consistency or
reproducibility of quantitative measurements by different observers assessing the same
quantity [47]. Following the recommendations of Shrout and Fleiss, the intra-rater reliability
ICC was used to illustrate absolute agreement across multiple measurements. Reliability
was categorized as poor (ICC < 0.5), moderate (0.5 ≤ ICC < 0.75), good (0.75 ≤ ICC < 0.9),
or excellent (ICC ≥ 0.9) [48].

Agreement between the Enode Sensor, My Jump 3, and the Force Plate was assessed
with Bland–Altman analysis, which provides a visual representation of the differences
between methods. This analysis calculates the mean bias (the average difference between
methods) and limits of agreement (mean difference ± 1.96 times the standard deviation of
the differences) [49].

Correlation analysis was conducted to evaluate the strength and direction of relation-
ships between measurements from different methods, with both Pearson’s and Spearman’s
correlation coefficients calculated). Linear regression analysis was also performed to assess
how well measurements from the Enode Sensor and My Jump 3 could predict Force Plate
measurements. The coefficient of determination (R2) was used to quantify the proportion
of the variance in Force Plate measurements explained by the other methods [50].

This comprehensive data analysis approach involved multiple statistical methods to
rigorously evaluate the reliability and validity of the Enode Sensor and My Jump 3 against
those of the Force Plate. Combining descriptive statistics, reliability analysis, Bland–Altman
analysis, correlation analysis, and linear regression allowed for a robust understanding
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of the performances of these tools. These methods provided a detailed evaluation of CMJ
performance data, summarizing trends (descriptive statistics), assessing consistency (relia-
bility analysis), evaluating agreement (Bland–Altman analysis), examining relationships
(correlation analysis), and predicting outcomes (linear regression). Statistical analyses were
conducted using Jamovi (version 2.3.28) [51–54] and SPSS (version 29.0.2.0) [55].

3. Results

The descriptive statistics for vertical jump heights measured using the Enode Sensor,
My Jump 3, and Force Plate are presented in Table 1. The Enode Sensor recorded the
highest mean vertical jump height (48.4 cm), followed by My Jump 3 (47.3 cm), with the
Force Plate recording the lowest mean vertical jump height (46.1 cm).

Table 1. Descriptive statistics (cm).

Device M ± SD SEM Min Max

EN 48.4 ± 4.18 0.77 39.0 54.3
MJ 47.4 ± 4.05 0.75 38.2 53.0
FP 46.1 ± 4.03 0.74 37.8 52.4

Notes: EN—Enode Sensor; MJ—My Jump 3; FP—Force Plate; M ± SD—Mean ± Standard Deviation; SEM—Standard
Error of the Mean; Min—Minimum; Max—Maximum. All the values are presented in centimeters (cm).

The results, presented in Tables 2 and 3, provide ICC values for both Single Measures
and Average Measures, along with their respective 95% Confidence Intervals (CIs) and Sig-
nificance Levels. Both the Enode Sensor and My Jump 3 demonstrated excellent reliability
when compared to the Force Plate, with ICC values of 0.914 and 0.968, respectively, both of
which were statistically significant (p < 0.001).

Table 2. Reliability analysis of Enode Sensor compared to Force Plate measurements.

Intraclass Correlation Type ICC Value 95% CI F Test df1 df2 Sig.

Single Measures 0.842 −0.042 to 0.963 69.351 28 28 0.00 *
Average Measures 0.914 −0.087 to 0.981 69.351 28 28 0.001 *

Notes: ICC—Intraclass Correlation Coefficient; CI—Confidence Interval; F—F-statistic for the reliability test;
df—degrees of freedom, Sig.—Significance Level. * p < 0.05.

Table 3. Reliability analysis of My Jump 3 compared to Force Plate measurements.

Intraclass Correlation Type ICC Value 95% CI F Test df1 df2 Sig.

Single Measures 0.938 0.065 to 0.986 144.923 28 28 0.001 *
Average Measures 0.968 0.122 to 0.993 144.923 28 28 0.001 *

Notes: ICC—Intraclass Correlation Coefficient; CI—Confidence Interval; F—F-statistic for the reliability test;
df—degrees of freedom; Sig.—Significance Level. * p < 0.05.

The Bland–Altman analysis was conducted to evaluate the agreement between the
Enode Sensor and My Jump 3 against the Force Plate in measuring vertical jump heights.
The mean bias and limits of agreement for each comparison are presented in Tables 4 and 5,
with the corresponding scatterplots in Figures 1 and 2. The results indicated that both the
Enode Sensor and My Jump 3 tend to overestimate vertical jump heights compared to the
Force Plate.

Table 4. Bland–Altman analysis of Enode Sensor compared to Force Plate measurements.

Bland–Altman
95% Confidence Interval

Estimate Lower Upper

Bias (n = 29) 2.281 1.908 2.65
Lower limit of agreement 0.362 −0.281 1.01
Upper limit of agreement 4.199 3.555 4.84
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Table 5. Bland–Altman analysis: My Jump 3 vs. Force Plate.

Bland–Altman
95% Confidence Interval

Estimate Lower Upper

Bias (n = 29) 1.2968 1.042 1.551
Lower limit of agreement −0.0141 −0.454 0.426
Upper limit of agreement 2.6077 2.168 3.048
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Specifically, in comparing the Enode Sensor to the Force Plate, the mean bias was
2.281 cm, indicating that the Enode Sensor generally overestimated vertical jump heights
by 2.281 cm relative to the Force Plate. The limits of agreement ranged from −0.281 cm to
4.84 cm, suggesting some variability in individual measurements.
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For My Jump 3 versus the Force Plate, the mean bias was 1.297 cm, with My Jump 3
overestimating jump heights by 1.297 cm on average. The limits of agreement, ranging from
−0.014 cm to 3.048 cm, suggest that My Jump 3 is closer to the Force Plate’s measurements,
indicating better agreement with the Force Plate compared to the Enode Sensor.

The correlation analysis (Table 6) between the Enode Sensor and the Force Plate
revealed an extremely strong positive relationship (Figure 3), with a Pearson correlation
coefficient of 0.972 and a Spearman correlation coefficient of 0.977. Similarly, the My Jump
3 App demonstrated a very strong positive relationship with the Force Plate (Figure 4),
showing a Pearson correlation coefficient of 0.987 and a Spearman correlation coefficient of
0.988. These results underscore the high levels of agreement between both the Enode Sensor
and My Jump 3 App with the Force Plate, supporting their use as reliable alternatives for
measuring vertical jump heights.

Table 6. Correlation analysis: Enode Sensor, My Jump 3, and Force Plate.

Correlation Analysis EN vs. FP MJ vs. FP

Pearson’s r 0.972 0.986
Spearman’s rho 0.977 0.988

Notes: EN—Enode Sensor; MJ—My Jump 3; FP—Force Plate.
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The linear regression analysis between the Enode Sensor (EN) and the Force Plate (FP)
demonstrates a strong predictive relationship, suggesting that the Enode Sensor closely
approximates measurements from the Force Plate. The model fit results reveal a high
degree of correlation, with an R value = 0.972 and an R2 = 0.945, indicating that approxi-
mately 94.5% of the variance in Enode Sensor measurements can be explained by Force
Plate values. The overall model is statistically significant, as indicated by the F-statistic
(F(1, 27) = 466, p < 0.001), affirming the strength and reliability of the predictive model
(Table 7).
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Table 7. Regression analysis of Enode Sensor and My Jump 3 App against Force Plate measurements.

Device R R2 F
Statistic

Sig.
Model Coefficients

Intercept
(Estimate ± SE)

Slope for Predictor
(Estimate ± SE)

95% Confidence
Interval for Slope

Enode vs. Force Plate 0.972 0.945 466 0.001 * 1.85 ± 2.161 1.01 ± 0.047 from0.913 to 1.11
My Jump 3 vs. Force Plate 0.986 0.973 966 0.001 * 1.64 ± 1.476 0.992 ± 0.031 from 0.927 to 1.06

Notes: R—Pearson correlation coefficient; R2—Coefficient of determination; F—F-statistic for model significance;
Sig.—Significance level; *denotes significant correlation at the level of p < 0.001; Intercept (Estimate ± SE)—Baseline
measurement with standard error; Slope for Predictor (Estimate ± SE)—Rate of change in device measurement per unit
of change in Force Plate; 95% Confidence Interval for Slope—Precision range for slope estimates.

An examination of the model coefficients further supports this strong relationship.
The intercept is 1.85 (SE = 2.161, p = 0.398), indicating that the baseline difference between
the two methods is minor. The slope for the Force Plate predictor is 1.01 (SE = 0.047,
p < 0.001), which is close to 1, suggesting a nearly one-to-one relationship between Force
Plate and Enode Sensor measurements. The 95% confidence interval for the slope (from
0.913 to 1.11) further reinforces this strong agreement, highlighting the Enode Sensor’s
reliability in measuring vertical jump heights in comparison to the gold-standard Force
Plate. These findings underscore the Enode Sensor’s potential as an accurate and cost-
effective alternative for vertical jump assessment, providing robust data closely aligned
with traditional laboratory-based Force Plate measurements.

The linear regression analysis between the My Jump 3 App and the Force Plate also
demonstrates a remarkably strong predictive relationship, indicating that My Jump 3
provides measurements closely aligned with those from the Force Plate. The model fit
statistics show an exceptionally high degree of correlation, with an R value of 0.986 and
an R2 value of 0.973, meaning that 97.3% of the variance in My Jump 3 measurements can
be explained by Force Plate values. The overall model is statistically significant, with an
F-statistic of 966 (F(1, 27) = 966, p < 0.001), confirming the robustness and reliability of this
predictive model.
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4. Discussion

The current study reinforces the validity and reliability of both the Enode Sensor
and My Jump 3 App as tools for measuring vertical jump heights, establishing them as
accessible alternatives to traditional Force Plates. Both the Enode Sensor (mean bias: 2.3 cm;
ICC: 0.914; R2: 0.945; Pearson’s r: 0.972; Spearman’s rho: 0.977) and My Jump 3 (mean bias:
1.3 cm; ICC: 0.968; R2: 0.973; Pearson’s r: 0.987; Spearman’s rho: 0.988) demonstrated strong
accuracy relative to that of the Force Plate, with My Jump 3 exhibiting closer agreement, as
indicated by its lower bias and higher proportion of explained variance. Consistent with
previous research that highlights the utility of CMJ assessments for evaluating lower-body
power and neuromuscular function in athletes [1,56], measurements with both devices
demonstrated high degrees of correlation with Force Plate measurements, indicating these
devices’ potentials for accurate performance tracking in sports settings.

The reliability analysis revealed that both devices had excellent Intraclass Correlation
Coefficients (ICCs), with values of 0.914 for the Enode Sensor and 0.968 for My Jump 3, both
statistically significant. High ICC values affirm the stability of these devices for repeated
measurements over time, making them feasible for longitudinal monitoring in training
contexts [32,33]. This finding is particularly significant in sports, where practitioners require
reliable tools to track performance changes and adjust training loads based on accurate
feedback [4].

Moreover, the strong positive relationships observed between each device and the Force
Plate, as indicated by Pearson and Spearman correlation coefficients (r = 0.972–0.988), align
with previous studies on the My Jump App’s validity for jump height assessment [17–20,34,44].
This high degree of correlation validates the suitability of both the Enode Sensor and My
Jump 3 App for assessing jump performance in both controlled and field environments,
especially given their cost effectiveness and portability compared to those of conventional
Force Plates [14,19].

The Bland–Altman analysis further revealed that both devices slightly overestimated
jump heights compared to those measured using the Force Plate, with mean biases of 2.281 cm
and 1.297 cm for the Enode Sensor and My Jump 3, respectively. The My Jump 3 App showed
closer agreement with the Force Plate, as evidenced by narrower limits of agreement (My Jump
3: from −0.014 to 3.048 cm; Enode Sensor: from −0.281 to 4.84 cm), indicating that My Jump
3 may offer greater precision. This finding aligns with studies that have reported near-perfect
agreement between My Jump and Force Plate measurements [17,57]. The higher precision
of My Jump 3 could be advantageous for practitioners who require detailed performance
analysis, such as in competitive environments or for elite athlete monitoring [14,58].

The regression analysis results further substantiate the reliability of these devices. R2

values of 0.945 for the Enode Sensor and 0.973 for My Jump 3 indicate that a large pro-
portion of the variance in Force Plate measurements can be explained by these alternative
tools. These findings echo prior studies that have validated wearable devices and mobile
applications for CMJ assessment, as they provide an accessible means to collect reliable
jump data without the logistical constraints of laboratory settings [15,19,29]. The high R2

values in the regression analyses suggest that both the Enode Sensor and My Jump 3 App
can accurately predict jump heights, supporting their potential application across different
athletic levels and training contexts.

These results underscore the My Jump 3 App’s accuracy as a measurement tool for
vertical jump heights, suggesting it performs comparably to the Force Plate, which is widely
regarded as the gold standard. The high R2 value and significance level indicate that My
Jump 3 could serve as a practical and accessible alternative for performance monitoring
in athletic settings, providing reliable data that align closely with laboratory-based Force
Plate measurements. An R2 value near 1, observed for both the Enode Sensor and My
Jump 3 App, demonstrated that a substantial proportion of the variance in Force Plate
measurements can be accounted for by these tools, highlighting their strength as predictors
of jump heights. These results suggest that both the Enode Sensor and My Jump 3 App
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offer reliable estimates of jump heights, with minimal accuracy loss relative to Force Plate
measurements, making them suitable for both training and competitive settings.

Despite these promising results, it is crucial to acknowledge limitations. The controlled
conditions under which measurements were taken may limit the generalizability of these
findings. Previous research suggests that environmental variability, such as surface condi-
tions and lighting, can impact measurement accuracy in real-world settings [59,60]. Thus,
future studies should validate these devices in field-based scenarios with a more diverse
sample to enhance the robustness of the results. Additionally, although three jumps were
performed per participant, only the best jump was selected for analysis, which prevented
the further calculation of absolute reliability measures (standard error of measurement—
SEM—and minimal detectable change—MDC). Incorporating multiple testing sessions or
additional trials in future research would enable these indices to be determined, providing
a more comprehensive interpretation of the data. Furthermore, despite the app being
operated by an experienced observer with expertise as a strength and conditioning (S&C)
coach—ensuring adherence to the app’s guidelines and utilizing the highest available
recording frequency—errors may still have occurred because of inaccuracies in marking
the jump/landing moments or frame omissions in the recording frequency. Nevertheless,
the app’s flexibility, cost effectiveness, and practical applications in training environments
make it a valuable tool, with future studies potentially enhancing its accuracy through
automated frame detection or higher-frequency cameras.

Lastly, the Enode Sensor and My Jump 3 App demonstrated excellent reliability and
validity in measuring vertical jump heights when compared to the Force Plate measure-
ments, offering practical, cost-effective solutions for sports performance monitoring. These
tools have the potential to democratize access to performance data, allowing for continuous,
real-time athlete monitoring that can support individualized training adjustments and
load management without requiring expensive laboratory equipment. The implications of
this study suggest that as technology advances, wearable sensors and mobile applications
will continue to play integral roles in sports science, offering versatile tools for assessing
and optimizing athletic performance in dynamic, real-world environments. Future studies
should extend beyond the current controlled laboratory setting by evaluating these tools
across diverse athletic populations and under more dynamic, field-based conditions to
enhance their generalizability and practical relevance.

5. Conclusions

This study confirmed the Enode Sensor and My Jump 3 App as reliable, valid al-
ternatives to traditional Force Plates for assessing vertical jump height when tested on
this study’s participants, with both devices demonstrating high agreement and signifi-
cant Intraclass Correlation Coefficient (ICC) values in comparison to those for Force Plate
measurements. Although minor overestimations were noted for both tools, as shown by
Bland–Altman analyses, these deviations were within acceptable limits, reinforcing the
suitability of both tools for practical use in diverse training contexts. The portability and
real-time monitoring capabilities of these devices make them particularly advantageous
for training sessions, offering a flexible and accurate option across various athletic settings.
These findings underscore the potential for accessible, portable technologies to facilitate
regular performance monitoring outside laboratory environments, empowering coaches
and athletes to make data-informed adjustments to training intensity and strategy.
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